Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38666884

RESUMO

Obesity is a socially significant disease that is characterized by a disproportionate accumulation of fat. It is also associated with chronic inflammation, cancer, diabetes, and other comorbidities. Investigating biomarkers and pathological processes linked to obesity is especially vital for young individuals, given their increased potential for lifestyle modifications. By comparing the genetic, proteomic, and metabolomic profiles of individuals categorized as underweight, normal, overweight, and obese, we aimed to determine which omics layer most accurately reflects the phenotypic changes in an organism that result from obesity. We profiled blood plasma samples by employing three omics methodologies. The untargeted GC×GC-MS metabolomics approach identified 313 metabolites. To augment the metabolomic dataset, we integrated a label-free HPLC-MS/MS proteomics method, leading to the identification of 708 proteins. The genomic layer encompassed the genotyping of 647,250 SNPs. Utilizing omics data, we trained sparse Partial Least Squares models to predict body mass index. Molecular features exhibiting frequently non-zero coefficients were selected as potential biomarkers, and we further explored enriched biological pathways. Proteomics was the most effective in single-omics analyses, with a median absolute error (MAE) of 5.44 ± 0.31 kg/m2, incorporating an average of 24 proteins per model. Metabolomics showed slightly lower performance (MAE = 6.06 ± 0.33 kg/m2), followed by genomics (MAE = 6.20 ± 0.34 kg/m2). As expected, multiomic models demonstrated better accuracy, particularly the combination of proteomics and metabolomics (MAE = 4.77 ± 0.33 kg/m2), while including genomics data did not enhance the results. This manuscript is the first multiomics study of obesity in a gender-balanced cohort of young adults profiled by genomic, proteomic, and metabolomic methods. The comprehensive approach provides novel insights into the molecular mechanisms of obesity, opening avenues for more targeted interventions.

2.
Metabolites ; 13(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37887420

RESUMO

Recently, a clinical blood metabogram was developed as a fast, low-cost and reproducible test that allows the implementation of metabolomics in clinical practice. The components of the metabogram are functionally related groups of blood metabolites associated with humoral regulation, the metabolism of lipids, carbohydrates and amines, lipid intake into the organism, and liver function, thereby providing clinically relevant information. It is known that the gut microbiota affects the blood metabolome, and the components of the blood metabolome may affect the composition of the gut microbiota. Therefore, before using the metabogram in the clinic, the link between the metabogram components and the level of gut microorganisms should be established. For this purpose, the metabogram and microbiota data were obtained in this work for the same individuals. Metabograms of blood plasma were obtained by direct mass spectrometry of blood plasma, and the gut microbiome was determined by a culture-based method and real-time polymerase chain reaction (PCR). This study involved healthy volunteers and individuals with varying degrees of deviation in body weight (n = 44). A correlation analysis determined which metabogram components are linked to which gut microorganisms and the strength of this link. Moreover, diagnostic parameters (sensitivity, specificity and accuracy) confirmed the capacity of metabogram components to be used for diagnosing gut microbiota alterations. Therefore, the obtained results allow the use of the metabogram in a clinical setting, taking into account its relationship with gut microbiota.

3.
Metabolites ; 13(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37512504

RESUMO

Recently, the concept of a mass spectrometric blood metabogram was introduced, which allows the analysis of the blood metabolome in terms of the time, cost, and reproducibility of clinical laboratory tests. It was demonstrated that the components of the metabogram are related groups of the blood metabolites associated with humoral regulation; the metabolism of lipids, carbohydrates, and amines; lipid intake into the organism; and liver function, thereby providing clinically relevant information. The purpose of this work was to evaluate the relevance of using the metabogram in a disease. To do this, the metabogram was used to analyze patients with various degrees of metabolic alterations associated with obesity. The study involved 20 healthy individuals, 20 overweight individuals, and 60 individuals with class 1, 2, or 3 obesity. The results showed that the metabogram revealed obesity-associated metabolic alterations, including changes in the blood levels of steroids, amino acids, fatty acids, and phospholipids, which are consistent with the available scientific data to date. Therefore, the metabogram allows testing of metabolically unhealthy overweight or obese patients, providing both a general overview of their metabolic alterations and detailing their individual characteristics. It was concluded that the metabogram is an accurate and clinically applicable test for assessing an individual's metabolic status in disease.

4.
J Pers Med ; 11(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494491

RESUMO

Obesity is a frightening chronic disease, which has tripled since 1975. It is not expected to slow down staying one of the leading cases of preventable death and resulting in an increased clinical and economic burden. Poor lifestyle choices and excessive intake of "cheap calories" are major contributors to obesity, triggering type 2 diabetes, cardiovascular diseases, and other comorbidities. Understanding the molecular mechanisms responsible for development of obesity is essential as it might result in the introducing of anti-obesity targets and early-stage obesity biomarkers, allowing the distinction between metabolic syndromes. The complex nature of this disease, coupled with the phenomenon of metabolically healthy obesity, inspired us to perform data-centric, hypothesis-generating pilot research, aimed to find correlations between parameters of classic clinical blood tests and proteomic profiles of 104 lean and obese subjects. As the result, we assembled patterns of proteins, which presence or absence allows predicting the weight of the patient fairly well. We believe that such proteomic patterns with high prediction power should facilitate the translation of potential candidates into biomarkers of clinical use for early-stage stratification of obesity therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...